Technical Meetings

- 3 meetings
- 1 workshop (tentative)
- Timeline: Through April to get draft in place for review and community vetting
- Purpose of Meeting #1: Assess information collected to date and relevance to understanding Limiting Factors of LCR Watersheds. Review straw goals and objectives
- Meeting #2: Discuss draft approach to defining restoration strategy
 - Establish technical foundation for strategic action plan based on existing datasets. .
- Meeting #3: Match project opportunities to test strategy

TAC Meeting #2 Agenda

• Purpose of Meeting #2: Establish technical foundation for strategic action plan based on existing datasets. .

Proposed Agenda:

- Introductions
- Summary of Meeting #1
- Review Purpose of Meeting and Agenda
- Understanding formative processes of LCRWC watersheds
 - Hydrogeomorphic approach to delineating subareas: Geologic snapshots in time
- Datasets available and relevance to strategy development
 - Review IP maps and completed habitat surveys
- LUNCH
- Feedback on SAP Goals and Objectives
- Brainstorm Strategies/Actions suitable for LC Watershed Subareas (30 minutes)
 - Clatskanie River reach example
- Next Steps and Meeting #3 Agenda (15 minutes)-All
- Adjourn

TAC Meeting #1 Takeaways

- <u>Species Discussion</u>
- Limiting Factors Application to LCR Watersheds
- Goals and Objectives
- Available Datasets

Action Development Guidance

- Match project opportunities to address limiting factors
- Focused outreach on key areas of watersheds current unexplored

(timber areas, tidal areas)

- Consider broader landscape view
 - Grouping of projects together synergistically
 - Adjacency to intact areas
 - Target areas in major gaps based on work completed to date
- Secure resources to close gaps on existing uncertainties (i.e. Rapid BioAssessment)

Geologic Snapshots in Time

Lower Columbia River Watershed Council

Why?

- Basis for understanding formative process based on landforms or "bones" that drive hydrology
- Landforms shape size, shape, orientation and overall hydrologic patterns
- Less static that HUC system leaves room for dynamism (i.e. stream power, sediment transport, habitat structure)
- Inform actions that are sustainable, cost-effective

Geology of LCRWC

- Looks at restoration opportunities in broader landscape context
- Focuses restoration program toward cost-effective projects

Geology of Oregon

- Foundation pieces=130-50 mya
- Bricks and Mortar=Volcanic and Ocean Sediments
- Plaster and Paint=Rivers, Ice, Landslides...eventual Subduction!

Geology LC Watersheds Factors

- Subduction Zone forms basis of Coastal Mountains
- 50 million years of sea level rise and fall deposited Marine Sediments
- Uplift, and foldling contributes to coastal mountains expansion interspersed with localized volcanism
- 15-17 million years ago Columbia River Lava Flows
- 2 mya to today-river and wind draping deposits
- 2 mya-10,000 glaciers and icedams contributing to stochastic flooding
- Regional volcanic
- Episodic flooding
- Landslides

BRICKS & MORTAR PHASE -

7. Coast Range Volcanoes: Oregon's first hot spot

(Lighter shading indicates original extent.)

Geology LC Watersheds Factors-Clatskanie River

Marine Sediments (older)

So what?

Conyers Creek-Marine Sediment Dominated

Clatskanie River-Basalt Dominated

Structure of Floodplain Habitats-LCR Watersheds

So what?

Floodplain, Unconfined Channel Type

Floodplain, Unconfined Channel Type

IP Primer

Figure 1: Suitability curves for each of the three IP components (Gradient, Valley Constraint and Discharge) for juveniles of each of the three species (coho, steelhead and chinook). Note the scale change (abscissa) across each species for the gradient attribute.

Intrinsic Potential-Coho Salmon

Intrinsic Potential-Chinook Salmon

Intrinsic Potential-Steelhead

Summary of effort to date

- Fish passage projects
- Streambank stabilization
- Estuarine
- Riparian
- Channel reconfiguration
- Instream complexity project types

A. Strategies to Address Physical Habitat Quality

Description: Past and current land use have impaired access to off-channel rearing areas. This has also increased sediment sources through road building and land clearing activities.

List of <u>Strategies</u> Include:

- Increase LWD in channel
- □ Expand riparian and wetland quality and diversity
- Engage upper watershed landowners to increase roughness upstream to reduce sediment inputs

B. Strategies to Address Estuarine Food Web Productivity

Description: Loss of estuarine habitat from diking and impoundments from upper river dams have shifted food-web productivity from a macro-detrital to a micro-detrital system.

List of <u>Strategies</u> include:

- Increase connectivity of estuarine habitats through culvert replacements and/or dike removal increasing nutrient exchange and estuarine foodweb productivity
- Reduce impacts of invasive species to increase estuarine plant diversity thereby expanding available prey resources

E. Action Items for Addressing uncertainties/Closing DataGaps

- 1. Monitoring Questions
 - A) PRODUCTIVITY
 - B) FLOOD PROFILES/GAGE DATA
- 2. Rapid <u>BioAssessment</u>
- 3. Side channel inventory
- 4. Applied Research
- 5. Climate Change and Resiliency Planning

Plan Components

- Vision
- Goals
 - Technical
 - Programmatic
- Project Opportunities
- Action Items
- Implementation Schedule

V. GOALS

A. Vision Statement

Improve watershed function though the implementation of a diversity of restoration projects for the long-term community sustainability and resilency.

B. Technical Goals

- 1. Improve riparian condition
- 2. Increase stream complexity
- 3. Remove barriers
- 4. Improve estuary habitat
- 5. Upland/Watershed Processes

C. Organizational Goals

- 1. LCRWC governance
- 2. Outreach Plan
- D. Community Goals
 - 1. Preserve rural character and values
 - 2. Sustainability
 - A) E.G ENCOURAGE SUSTAINABLE FOREST PRACTICE
 - 3. Resiliency

VI. ACTION PLAN

- A. Project Type X: Stream Corridor/Riparian
- B. Project Type Y: Upland Terrestrial
- C. Project Type Z: Addressing uncertainties
 - 1. Monitoring
 - 2. Assessment
 - 3. Applied Research
 - 4. Resiliency Planning
- D. Organization/Programmatic Actions
 - 1. Outreach and Education
 - 2. Board Recruitment and Development

Scientific Basis for Strategy

- Lower Columbia Recovery Plan
- Watershed Assessment
- Habitat Surveys
- Additional Studies
 - WQ Monitoring
 - RCPP Project

Limiting Factors, Clatskanie River

			Habitat		
	Key Limiting Factors	Limiting Factors Description	Туре	Threat Description	Speices
(Physical Habitat Quality*	Imposing complexity and discussion			lunuarila Caba, Chinaak
	Filysical Habitat Quality		Taileasteas	Dest. summer land uses	Staalbaad
			Tributary	Past, current land uses	Steelnead
	Foodweb	Reduced Macrodetrital Inputs	Estuary	Hydrosystem, revetments, dredged material	All juvenile salmonids
	Water Quantity	Hydrosystem impacts, access to offchannel habitats	Estuary		Junvenile Coho, Chinook
	Harvest Management	Consumptive, targeted fishery			Adult Coho, Chinook
	Hatchery Management	Stray hatchery fish interbreeding with wild fish			Adult Chinook only
	Secondary Limiting Factors	Limiting Factors Description	Туре	Threat Description	Speices
	Water quantity*	Upslope Land Uses	Tributary	Shifts in local hydrographs from ag and forestry practices	All juvenile salmonids
<	Physical Habitat Quality*	Excessive fine sediment, loss of habitat complexity and diversity; access to off-channel habitats	Tributary	Rural roads and Land Use	All juvenile salmonids
$\left(\right)$	Water Quality*	Elevated water temperature	Tributary	Excessive fine sediment, loss of habitat complexity and diversity, access to off-channel habitats	Junvenile Coho, Steelhead
	Competition	Hatchery Fish	Estuary	Smolts from all Columbia Basin hatcheries	Junvenile Coho only
	Physical Habitat Quality	Excessive fine sediment, loss of habitat complexity and diversity; access to off-channel habitats	Estuary	Channelization, diking, navigation channel	All juvenile salmonids
	Water Quality	Elevated water temperature	Estuary	Flow regulation, reservoirs	All juvenile salmonids
	Water Quality	Toxins from agricultural practices	Estuary	Upper basin impacts from pesticides	All juvenile salmonids
	Water Quality	Toxins from urban and industrial sources	Estuary	Upper basin impacts from trace metals, PCBs, PAHs	All juvenile salmonids
	Predation	Avian species (Caspian terns, cormorants)	Estuary		All juvenile salmonids

Key Limiting Factors (Tributary)	Threat	What fish?			
Impaired complexity and diversity, access to off channel habitats	Excessive sediment, past, current landuses	Juvenile Coho, Chinook, Steelhead			

Example Strategies to address limiting factors:

- More LWD in-channel
- Increase riparian condition and wetland diversity in non-tidal areas
- Remove barriers/constraints to off-channel habitats
- Road decommissioning in upperwatershed
- Other ideas

Limiting Factors, Estuarine areas

		Habitat		
Key Limiting Factors	Limiting Factors Description	Туре	Threat Description	Speices
Physical Habitat Quality*	Imparied complexity and diversity			Junvenile Coho, Chinook,
	Access to off-channel habitats	Tributary	Past_current land uses	Steelhead
Foodweb	Reduced Macrodetrital Inputs	Estuary	Hydrosystem, revetments, dredged material	All juvenile salmonids
Water Quantity	Hydrosystem impacts, access to offchannel habitats	Estuary		Junvenile Coho, Chinook
Harvest Management	Consumptive, targeted fishery			Adult Coho, Chinook
Hatchery Management	Stray hatchery fish interbreeding with wild fish			Adult Chinook only
Secondary Limiting Factors	Limiting Factors Description	Туре	Threat Description	Speices
Water quantity*	Upslope Land Uses	Tributary	Shifts in local hydrographs from ag and forestry practices	All juvenile salmonids
Physical Habitat Quality*	Excessive fine sediment, loss of habitat complexity and diversity; access to off-channel habitats	Tributary	Rural roads and Land Use	All juvenile salmonids
Water Quality*	ality* Elevated water temperature		Excessive fine sediment, loss of habitat complexity and diversity, access to off-channel habitats	Junvenile Coho, Steelhead
Competition	Hatchery Fish	Estuary	Smolts from all Columbia Basin hatcheries	Junvenile Coho only
	Excessive fine sediment, loss of habitat complexity and diversity;			
Physical Habitat Quality	access to off-channel habitats	Estuary	Channelization, diking, navigation channel	An juvenne sannonius
Water Quality	Elevated water temperature	Estuary	Flow regulation, reservoirs	All juvenile salmonids
Water Quality	Toxins from agricultural practices	Estuary	Upper basin impacts from pesticides	All juvenile salmonids
Water Quality	Toxins from urban and industrial sources	Estuary	Upper basin impacts from trace metals, PCBs, PAHs	All juvenile salmonids
Predation	Avian species (Caspian terns, cormorants)	Estuary		All juvenile salmonids

Example Strategies to address limiting factors:

- Tidal hydrology reconnection-Levee, tidegate removal
- Expand rearing edge density
- Increase marsh and swamp habitats
- Increase estuarine plant community diversity
- Reduce invasive plant infestation

Vision (from Council Charter):

• A balanced ecosystem approach that supports a healthy watershed and provides for sustainable natural resources and for an economic base and viable communities.

-SAP Goal Statement-

Improve watershed function though the implementation of a diversity of restoration projects for recovery and sustainability of salmon populations and community resiliency.

- Technical Goals
 - Increase access to spawning habitat to maximize reproduction capacity of adult salmon
 - <u>Improve riparian condition (LFA Goal=16.4 miles)</u> for LWD recruitment and minimize elevated temperature trends
 - <u>Increase stream complexity</u> through strategic placement of LWD
 - <u>Increase habitat connectivity</u> between side channel/confluence areas
 - <u>Improve estuary rearing capacity</u> for needs of juvenile salmonids
 - <u>Protect/enhance</u> watershed processes
 - <u>Improve water quality</u> in degraded reaches for bacteria and temperature
 - Address existing uncertainties for:
 - PRODUCTIVITY
 - GROUNDWATER

Organizational Goals

<u>LCRWC governance</u>-Strengthen agreements and project management roles with local partners through regular project coordination meetings

<u>Outreach</u>-Increase diversity of community partners through formal and informal activities outlined in outreach plan.

Board Recruitment-Increase board membership to represent diversity of broader lower Columbia community.

Expand environmental education opportunities in collaboration with local schools.

• Community Goals

<u>Sustainability-Support natural resource managers in timber and agricultural community</u> to apply new technologies that promote sustainable natural resource practices.

<u>Resiliency</u>-Serve as a resource to municipalities and community interest to design projects for existing vulnerabilities to climate change (i.e. coastal storminess/flooding, temperatures, sea level rise)

Action Development Guidance

- Match project opportunities to address limiting factors
- Focused outreach on key areas of watersheds current unexplored

(timber areas, tidal areas)

- Consider broader landscape view
 - Grouping of projects together synergistically
 - Adjacency to intact areas
 - Target areas in major gaps based on work completed to date
- Secure resources to close gaps on existing uncertainties (i.e. Rapid BioAssessment)

Formulation Strategy

- Landscape based
- Potential metrics
 - Nearest neighbor to anchor habitat
 - Patch density
 - Size
 - Edge density (i.e. complexity)
 - Node/confluence in section
- Candidate for resiliency planning

Project Examples/Profiles

Year 1 timeline (2019) Year 2 timeline (2020) Years 3-5 timeline (2021-2023)

Spatial Lens

Project Inventory (DRAFT), LCRWC

Project Implementation Schedule

			Implementation Schedule			ule	
Project Name	Project Type	Relevant Strategies	2019	2020	2021	2022	2023
Page Creek	Culvert Replacement		x				
Dribble Creek	Culvert Removal,		x				
Little Clatskanie	Apiary Crossing/Bridge installation		x				
Perkins Creek (Olson Road)	Fish passage, wetland enhancement			x			
Reach 10	channel enhancement, riparian vegetation			x			
Keystone (Alder Rd. /Sweetown County roads)	culvert replacement??			x			
Stewart Creek Crossing	Potential culver				x		
Olson Creek Passage	fish passage				x		
Graham Creek/Colvin Rd	fish passage				x		
Divide Creek	fish passage				x		
Plympton Creek	Estuary rearing					x	
Deadman Slough						<u>^</u>	 V
(sweettown road)	LWD Placement, multiple						^
	project types at reach level						X
Clatskanie City Reach	Streambank Protection						X
Fox Creek	Fish passage						X
Carr Slough	Estuarine/Floodplain Potential culver						X
Tandy Creek	replacement						х