

Figure 7.1: Channel modifications in the Clatskanie floodplain. Beaver Dredge Cut is an example of channel relocation and subsequent loss of floodplain connectivity (REO, 2001).

VII. Channel Modification Assessment

Introduction

Stream ecosystems are ever-changing; channels are constantly under the influences of erosion and deposition. A stream constantly seeks a quasi-dynamic equilibrium with its gradient, and maintains its floodplain by regularly overflowing its banks and by laterally shifting over the inundated region (Allan, 1995). This equilibrium has often been altered by human intervention. Waterways have played a central role in human history and we have modified stream channels to meet the various needs of our society. Stream channels within the Lower Columbia-Clatskanie Subbasin have been modified by a variety of activities including: road construction, flood control, impoundments for irrigation and drinking water, and bank stabilization and channel relocation in urban and residential zones. Figure 7.1 is an example of channel modifications within floodplain habitats of the Columbia River. Beaver Creek no longer connects to Beaver Slough, instead Beaver Dredge Cut now drains Beaver Creek directly into the Clatskanie River.

Channel modifications often result in degradation of the quality and quantity of instream habitats essential for the life cycle of salmonids. Depending on the type of channel modification, the potential effects may include: loss of spawning gravels, reduction of pool habitats, depletion of large wood, and an overall reduction in habitat complexity. Additional effects of channel modifications are flow alteration, increased scouring, reduction of off-channel habitats, and loss of connectivity to floodplain food sources. Furthermore, some channel modifications can present a barrier to fish migration, effectively eliminating the use of upstream habitats by anadromous salmonids and resident fish that migrate within the stream system (see Table 7.1).

Stream ecosystems form a continuous strand from headwaters to mouth, in which processes taking place upstream strongly influence downstream dynamics, and to some extent the reverse occurs as well (Allan, 1995). Channel modifications therefore can have impacts extending both downstream and upstream. The degree of impact to the habitat will depend on the channel habitat type and the type and magnitude of the channel modification (WPN, 1999). Within this section of the watershed assessment, channel modifications have been mapped and evaluated for potential degree of impact. The channel habitat types defined within Section III of this watershed assessment are used to evaluate the potential impacts that each channel modification can have on the instream habitats. In addition to channel habitat types, position in watershed, percent of stream channel modified, and fish presence are used to assess a potential impact of low, moderate, or high for each channel modification.

Methodology

Data Inventory and Sources

Information regarding the locations and types of developments that have affected stream channels has been collected through interviews with agency personnel and landowners, and by reviewing historic documents, agency records, topographic maps, and aerial photographs. The types and scales of current and historical channel modifications vary from points along the stream channel to entire segments or reaches of the channel. Many of the current channel modifications, such as impoundments and bridges, are mapped as points along the stream channel, while channels modified by urban developments or road construction are mapped as segments. Table 7.1 presents a list of common channel modification activities and the potential impacts from such activities.

Channel Modification Activity	Potential Impacts
Hydroelectric and irrigation dams	Migration barrier, loss of spawning and rearing habitat, non-
	native fish introduction
Reservoirs and artificial impoundments	Flow alteration, loss of spawning gravels
Small agricultural impoundments, cattle	Migration barrier, loss of spawning and rearing habitat, non-
ponds, fire ponds	native fish introduction, water quality impacts
Dikes, levees (usually for flood control)	Loss of side-channels and floodplain function, decrease in
	channel length, and reduction of habitat complexity
Channelization (channel straightening,	Reduction in key habitat features such as pools and sorted
hardening, or relocation)	gravel
Dredged channels	Decrease in habitat complexity
Stream-bank protection (riprap, pilings,	Decrease in lateral scour pools; likely to incite bank erosion
bulkheads)	downstream
Built-up areas in floodplains, in/near	Loss of side-channels, flood attenuation, and food-chain support
estuaries, wetlands, and channels	
Tide gates	Loss of off-channel rearing areas and food-chain support
Roads next to streams	Loss of side-channels, lateral pools, and riparian function
Extensive fill associated with road crossings	Loss of habitat complexity, downstream erosion
(~250+ feet)	
Push-up dams	Migration barrier, habitat loss, flow alteration
Sand and gravel mining in/near channels,	Pool filling, decreased habitat complexity
tailings deposits	

Table 7.1: Common stream channel modifications and potential impacts (WPN, 1999).

Interviews were held with watershed council members, senior and retired agency personnel, and old-time local residents. Information gathered during these interviews included the locations and purposes of the channel modifications and the approximate year and scale of impact. The location and date of historic channel modifications are approximate. Oregon State Fish Commission reports and Department of Interior Fisheries Reports were another source of historic data pertaining to instream habitat modifications and habitat enhancements. Other documents reviewed include historic society notes and historical texts. Relatively few accounts were found that described in-channel modifications; most of the historical records pertained to changes in land use and demographics.

Water rights records from the Oregon Department of Water Resources were used to locate reservoirs or impoundments. These records, introduced in the Hydrology and Water Use Assessment, contain the location, year, and size or rate of water use for each impoundment. Impoundments after 1974 would have also required a fill/removal permit from the Army Corps or Division of State Lands. In a few cases, water rights records matched up with data collected during the historical interviews.

Fill/removal permits acquired from the Oregon Division of State Lands were also used to locate channel modifications. Removal or fill of 50 cubic yards or more within "waters of the state" requires a permit from the Division of State Lands. "Waters of the state" are defined as natural waterways including all tidal and notidal bays, intermittent streams, constantly flowing stream, lakes, wetlands and other bodies of water in this state, navigable and nonnavigable (ORS 196.800-990). The earliest fill/removal permit within the Lower Columbia-Clatskanie Subbasin is from 1974. In areas designated by the Division as essential indigenous anadromous salmonid habitat, most removal-fill activities require a permit, regardless of the number of cubic yards affected (ODSL, 2001).

Another source of data for channel modifications was USGS 7.5 minute topographic maps. These maps were used to identify dikes, levees, dredged channels, excessive road fill, stream crossings, and channel straightening and relocation. For this work, stream segments were identified where channel modifications have potentially impacted the stream ecosystem. USGS maps and GIS data were also used to map stream crossings. First, the roads GIS layer was overlayed on the streams to identify all stream crossings within the subbasin. These stream crossings were then verified by overlaying them on digital aerial photographs.

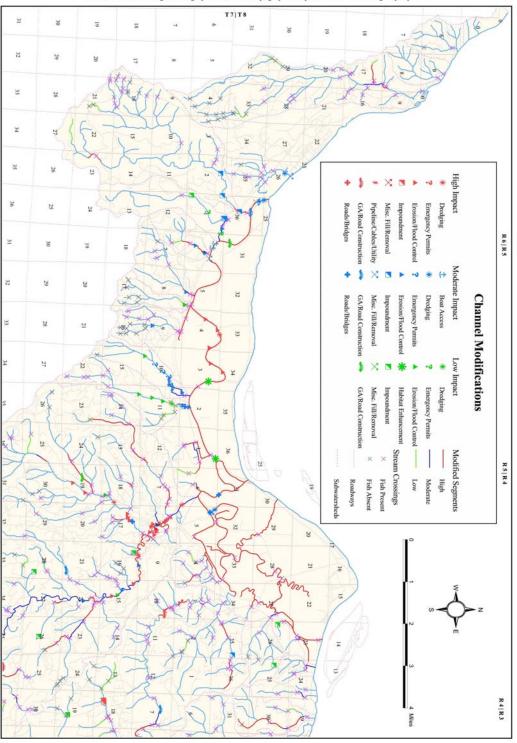
Evaluation of Impact

The goals of the channel modifications assessment are to identify historic and current channel modifications, map the location of each modification, identify the type of impact, and assign a potential degree of impact. The task of assigning a potential degree of impact is based on channel habitat types and current knowledge of the potential changes in the physical, chemical, and biological nature of running waters. This task may involve some judgment calls, but the focus is to identify those modifications that are likely to have the greatest impact on the stream ecosystem. The location and type of channel modifications (both historic and current) were inventoried and mapped in GIS prior to the evaluation of impacts. In order to identify a potential degree of impact, the channel modifications were overlayed with channel habitat types and fish distribution. Channel habitats types were assessed in Section II of this watershed assessment. Briefly, each channel habitat type has a sensitivity rating that corresponds to the degree and type of impact to be expected from channel modifications as well as modifications of the hydrologic cycle. Fish distribution has been derived from ODF stream class maps, which contain the distribution of resident and anadromous fish species. The Fish and Fish Habitat Assessment, Section VII of this watershed assessment, contains more detail on fish distribution. After identifying the presence or absence of fish and the channel habitat type, each modification was evaluated for potential degree of impact on the stream channel and supported aquatic ecosystems. Table 7.2 contains the general guidelines used to evaluate impacts. These guidelines are used along with a consideration of the geographic extent, age, and longevity of the modification.

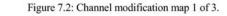
Stream crossings were not evaluated for potential degree of impact because of the uncertainty associated with this data type. Knowledge of the type, condition, and amount of fill associated with each stream crossing was not available for this watershed assessment. The majority of stream crossings are located on private lands. Problems with accessibility and the shear number and extent of stream crossings make it impractical to survey these features at the subbasin scale. Channel modifications from stream crossings include extensive fill leading to a loss of habitat complexity and downstream erosion.

Potential Degree of Impact
Low
- Channel habitat type sensitivity is low;
and/or -
 impacts likely affect only a small area (~<1% of channel);
- channel characteristics such as pattern, width, substrate type, bank erosion, pool features, and
large wood distribution are largely unchanged;
- fish are absent or assumed absent from the affected portion of the stream channel.
Moderate
 Channel habitat type sensitivity is moderate;
and/or -
 impacts are localized but apparent;
- changes to channel characteristics such as pattern, width, substrate type, bank erosion, pool
features, and large wood distribution are detectable but not obvious;
- fish are present or fish distribution is unknown within the affected portion of the stream channel.
High
- Channel habitat type sensitivity is high;
and/or -
 impacts are obvious: gross changes occur in-channel characteristics such as pattern, width, substrate, and bank erosion;
- a significant length of the channel is affected;
- fish are present or fish distribution is unknown within the affected portion of the stream channel.

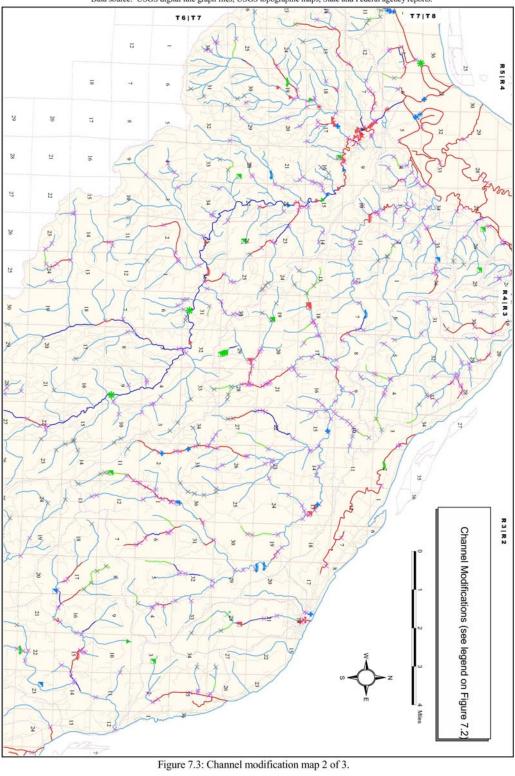
Table 7.2: Conditions for the potential degree of impact assessed to channel modifications.


Results

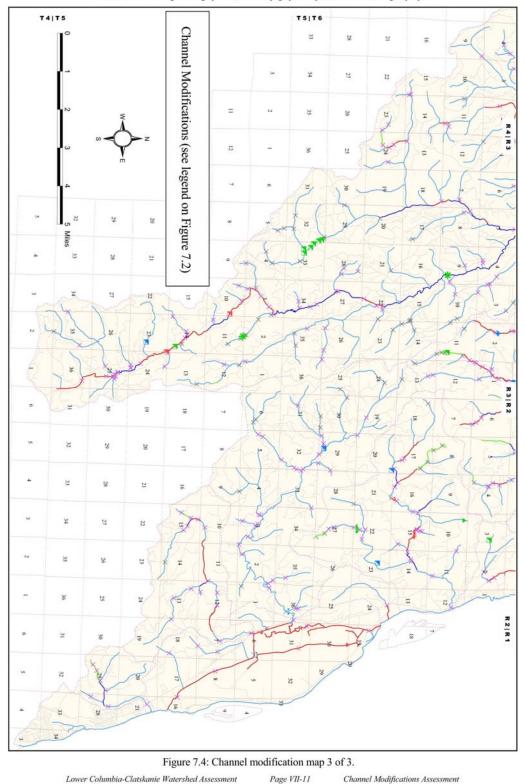
Two data formats were collected during the assessment of channel modifications: points of impact and segments of impacted stream channels. ODSL fill/removal permits and OWRD water rights records, as well as some of the data from other agencies and local residents, are represented as a point of impact. Additional data sources such as USGS topographic maps and interviews of agency personnel and local residents identified segments of the stream channel that have been modified. Both data types have been mapped in Figures 7.2-7.4. Points of impact are displayed as symbols and segments of impacted channels are displayed as lines, with colors indicating the degree of impact. Each point is referenced by Township, Range and Section within Appendix Tables 7.1a-7.3a.


A summary of the points of impact is presented in Table 7.3. This table presents the different types of impact occurring within each subwatershed and the relative degree of impact. Points of impact were found within 19 of the 32 subwatersheds of the Lower Columbia-Clatskanie Subbasin. Figure 7.5 presents a chart of the points of impact within each subwatershed. The three largest subwatersheds, Clatskanie River, Clatskanie Floodplain, and Beaver Creek, contain the majority of the points of impact found within the subbasin. More than half of the points of impact within the Clatskanie River subwatershed have a high potential for impact. The majority of the high potential impacts are near the city of Clatskanie, where erosion and flood control is common. The Clatskanie Floodplain subwatershed, which is a mainly composed of sloughs, has the second highest number of points of impact. Most of the points of impact within the Clatskanie Floodplain subwatershed have a moderate potential impact and are from dredging and erosion/flood control. Beaver Creek has numerous high and moderate potential points of impact from impoundments, road construction and bridges. Twelve of the remaining subwatersheds have between one and six points of impact with a moderate or high potential.

Segments of impacted streams are summarized in Table 7.4 and Figure 7.6. Within most of the impacted stream channels, there are several channel modification activities. The Clatskanie River has impacts from stream cleaning, dredging, roads next to stream, stream-bank protection, channelization, dikes and levees, and built up areas in urban and residential zones. To simplify matters, the most prominent or recent impacts within each stream segment were used to categorize the types and total stream miles of impacts. The greatest concentration of impacted channel segments can be found in the Clatskanie River subwatershed. Roads next to streams are the most common impact within that subwatershed, although stream cleaning has occurred throughout most of the length of the Clatskanie River and in the lower portion of Carcus Creek. Stream cleaning is a historic impact that occurred in many segments that are currently impacted by numerous other channel modification activities such as roads, built-up areas within the floodplain, and channelization.


The Clatskanie Floodplain has the second most miles of impacted stream segments, mainly affected by dikes and levees. There are 26.5 miles of channels that have been highly impacted by agricultural improvements. Many of these channels

Data source: USGS digital line graph files; USGS topographic maps; State and Federal agency reports.



Lower Columbia-Clatskanie Watershed Assessment Page VII-7 Channel Modifications Assessment

Data source: USGS digital line graph files; USGS topographic maps; State and Federal agency reports.

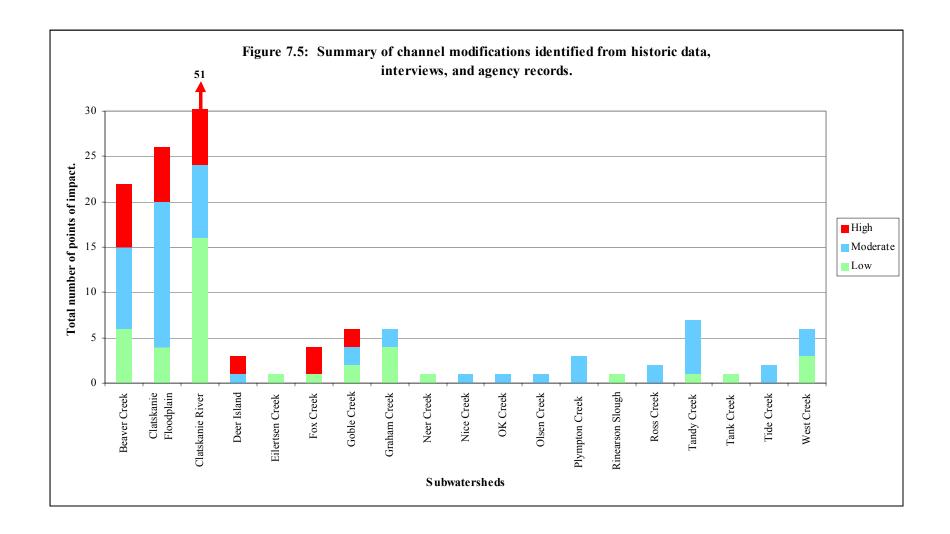
Lower Columbia-Clatskanie Watershed Assessment Page VII-9 Channel Modifications Assessment

Data source: USGS digital line graph files; USGS topographic maps; State and Federal agency reports.

Subwatershed	Modification Type		In	Grand		
Submater sileu			High	Moderate	Low	Total
Beaver Creek	Erosion/Flood Control		1			1
	Impoundment		5	2	6	13
	Road Construction		1	3		4
	Roads/Bridges			4		4
		Total	7	9	6	22
Clatskanie Floodplain	Boat Access			3		3
	Dredging		1	5		6
	Erosion/Flood Control		5	1		6
	Habitat Enhancement				2	2
	Impoundment				1	1
	Misc. Fill/Removal			4		4
	Road Construction			1	1	2
	Roads/Bridges			2		2
		Total	6	16	4	26
Clatskanie River	Dredging	1.0141	3			3
	Erosion/Flood Control		18	5	2	25
	Habitat Enhancement		10		3	3
	Impoundment		2	1	10	13
	Misc. Fill/Removal		1	1	10	1
	Pipeline/Cables/Utility		1			1
	Road Construction		1	1	1	3
	Roads/Bridges		1	1	1	2
	Koaus/ Bridges	Total	27	8	16	51
Decentral and	E	Total		8	16	-
Deer Island	Emergency Permits		1			1
	Erosion/Flood Control		1	1		1
	Misc. Fill/Removal	T (1	2	1		1
	E : /EI 10 / 1	Total	2	1		3
Eilertsen Creek	Erosion/Flood Control	T 1			1	1
	T 1 /	Total	1		1	1
Fox Creek	Impoundment		1			1
	Misc. Fill/Removal		1		1	2
	Roads/Bridges		1			1
~ ~ .		Total	3		1	4
Goble Creek	Emergency Permits		1			1
	Erosion/Flood Control				1	1
	Impoundment			2		2
	Road Construction		1		1	2
		Total	2	2	2	6
Graham Creek	Dredging			1	1	2
	Erosion/Flood Control			1	3	4
		Total		2	4	6
Neer Creek	Impoundment				1	1
		Total			1	1
Nice Creek	Roads/Bridges			1		1
		Total		1		1
OK Creek	Erosion/Flood Control			1		1
	_	Total		1		1
Olsen Creek	Erosion/Flood Control			1		1
		Total		1		1
Plympton Creek	Impoundment			3		3
- 1		Total		3		3

S-characteristical	Madifiantian Trues	Ir	Grand			
Subwatershed	Modification Type	High	Moderate	Low	Total	
Rinearson Slough	Road Construction			1	1	
	Total			1	1	
Ross Creek	Erosion/Flood Control		2		2	
	Total		2		2	
Tandy Creek	Emergency Permits		3		3	
	Erosion/Flood Control		1	1	2	
	Road Construction		2		2	
	Total		6	1	7	
Tank Creek	Impoundment			1	1	
	Total			1	1	
Tide Creek	Impoundment		1		1	
	Misc. Fill/Removal		1		1	
	Total		2		2	
West Creek	Emergency Permits			2	2	
	Erosion/Flood Control		1		1	
	Impoundment		2	1	3	
	Total		3	3	6	
	Grand Total	41	63	41	145	

Table 7.3: Summary of the points of impact identified within the subbasin.


affected by dikes and levees have also been channelized through bank stabilization and channel relocation (see Figure 7.1). Deer Island and Rinearson Slough subwatersheds also have extensive channel modifications of floodplain channels as a result of agricultural improvements. Beaver Creek and its tributaries have 14.4 miles of highly impacted stream channels scattered throughout the subwatershed. Roads next to streams are the main channel impacts observed within the Beaver Creek subwatershed.

Stream crossings are included on the maps of Figures 7.2-7.4, however the impacts from these features have not been evaluated. Channel modifications from stream crossings include extensive fill leading to a loss of habitat complexity and downstream erosion. Table 7.5 summarizes the number of crossings per subwatershed based on fish presence or absence.

Habitat enhancement activities are limited to five locations within the subbasin, three of which are within the Clatskanie River subwatershed (Figures 7.2-7.4). The habitat enhancement activities consist of three fish habitat enhancements and two wetland enhancement projects. All habitat enhancements are rated as having a low impact on the stream system.

Conclusions

Stream cleaning of large wood, debris jams, and beaver dams was conducted in the 40's and 50's by the Oregon Fish Commission for habitat enhancement purposes. Within the Lower Columbia-Clatskanie Subbasin, the Clatskanie River and its tributary Carcus Creek were cleaned of obstructions to fish passage. Despite the intentions of the stream cleaning efforts, the removal of instream structure resulted in poor fish returns due to channelization, increased rate of flow and scouring, and a reduction in key habitat features such as pools and sorted gravel. It is possible that the stream channels have

Subwatershed	Modification T	I	Grand			
	Wioumcation 1	High	Moderate	Low	Total	
Beaver Creek	Roads	14.429	3.052	6.537	24.018	
		Total	14.429	3.052	6.537	24.018
Clatskanie Floodplain	Built-up areas		0.238		0.002	0.240
	Channelization		6.652	0.735	0.216	7.603
	Dikes and levees		26.544	0.163		26.707
	Dredged channels		5.118			5.118
	Roads		0.491		1.100	1.591
		Total	39.043	0.897	1.318	41.258
Clatskanie River	Built-up areas		3.231	0.444		3.674
	Dredged channels		0.054	1.587		1.641
	Roads		18.160	3.912	2.019	24.091
	Stream Cleaning			18.916		18.916
	¥	Total	21.444	24.858	2.019	48.322
Deer Island	Channelization		4.374			4.374
	Dikes and levees		9.038			9.038
		Total	13.412			13.412
Eilertsen Creek	Built-up areas				0.355	0.355
		Total			0.355	0.355
Flume Creek	Roads		1.964	0.113	0.319	2.397
		Total	1.964	0.113	0.319	2.397
Fox Creek	Channelization		0.198			0.198
	Roads			1.017	0.577	1.594
		Total	0.198	1.017	0.577	1.792
Goble Creek	Roads	rotur	2.271	1.680	1.667	5.618
	Rouus	Total	2.271	1.680	1.667	5.618
Graham Creek	Channelization	rotur	2.271	0.276	0.586	0.862
Granam Creek	Roads			0.270	0.133	0.133
	Rouds	Total		0.276	0.719	0.996
Green Creek	Roads	Totul	1.194	0.270	1.530	2.724
Green Creek	Rouds	Total	1.194		1.530	2.724
Hunt Creek	Roads	10001	0.729	0.522	0.978	2.729
fruit Creek	Rodus	Total	0.729	0.522	0.978	2.229
Hunter	Channelization	Total	0.410	0.322	0.778	0.410
ITunter	Channenzation	Total	0.410			0.410
McBride Creek	Roads	Total	0.410	0.702	0.643	1.344
WIEDHUE CIEEK	Kudus	Total		0.702		
Merrill Creek	Channelization	Total	0.104	0.702	0.643	<u>1.344</u> 0.104
	Roads		2.255	0.500	0.205	
	Noaus	Tata1		0.508	0.205	2.969
Neer Creek	Channelization	Total	2.359	0.508	0.205	3.073
Neer Creek	Channelization		2.087			2.087
	Dikes and levees		0.759		0.217	0.759
	Roads	T / 1	0.044		0.217	0.217
	D'1 11	Total	2.846	0.00-	0.217	3.064
Niemela Creek	Dikes and levees		0.101	0.305		0.406
04.0 1	D 11	Total	0.101	0.305		0.406
OK Creek	Built-up areas		0.097			0.097
		Total	0.097			0.097

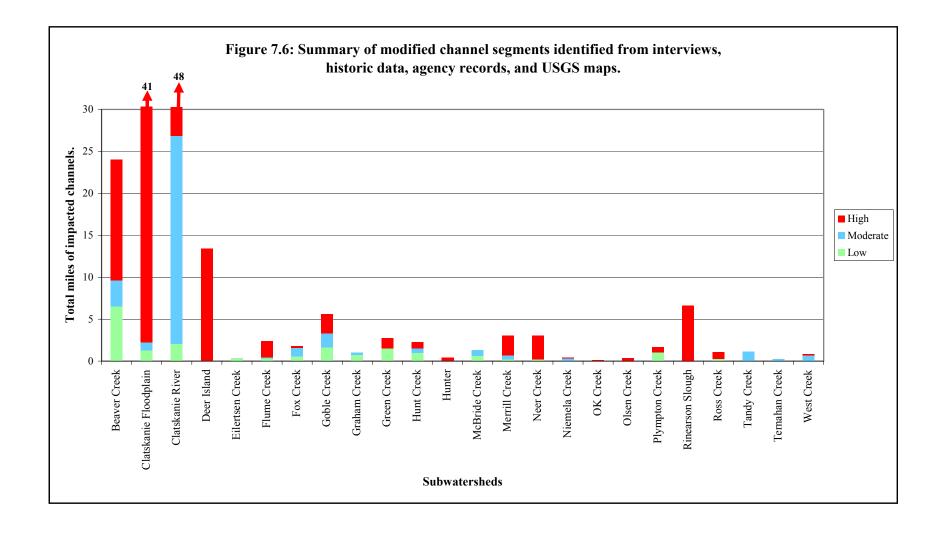

Subwatershed	Madification Tumo	I	Grand		
Subwatersneu	Modification Type	High	Moderate	Low	Total
Olsen Creek	Built-up areas	0.362			0.362
	Total	0.362			0.362
Plympton Creek	Built-up areas	0.148			0.148
	Roads	0.494		1.048	1.542
	Total	0.642		1.048	1.690
Rinearson Slough	Dikes and levees	6.630			6.630
	Total	6.630			6.630
Ross Creek	Roads	0.816		0.281	1.097
	Total	0.816		0.281	1.097
Tandy Creek	Built-up areas		0.231		0.231
	Channelization		0.911		0.911
	Total		1.142		1.142
Ternahan Creek	Roads		0.206		0.206
	Total		0.206		0.206
West creek	Built-up areas	0.145			0.145
	Dikes and levees		0.671		0.671
	Total	0.145	0.671		0.816
	Grand Total	109.093	35.950	18.413	163.457

 Table 7.4: Summary of modified stream segments presented as stream miles.

rebounded from this activity; streams are dynamic systems, and this issue will be further investigated in the Fish and Fish Habitat Assessment. However, the recruitment potential for large woody debris within the Clatskanie River is poor (see Riparian and Wetlands Assessment). Therefore, the ability of the system to recover instream structure after stream cleaning is questionable and will be further investigated in the Fish and Fish Habitat Assessment.

The Clatskanie River, within the area of the city of Clatskanie, has been subject to multiple impacts from erosion and flood control, as well as urban and residential development of the floodplain. The lower river has also been dredged recently. Potential impacts from these developments include channel straightening and a decrease in lateral scour pools, as well as losses of side channels, flood attenuation, and food-chain support. Riparian functions of shading, organic material inputs, and off channel habitats have also been lost. Through the various impacts of urban and residential development, roads next to the stream, forestry, and agriculture, the Clatskanie River has been moderately impacted throughout most of its length.

While habitat enhancement within the subbasin is minimal to date, the Lower Columbia River Watershed Council has implemented a substantial project reconnecting Westport Slough with the Clatskanie River. This project has restored flow through the Westport Slough allowing for flushing of nutrients and sediments, as well as passage of biota between the stream systems. Sediments have been accumulating at the mouths of many of the tributaries of the Westport Slough due to the stagnant nature of the slough before the reconnection. Habitat improvements from the reconnection of the Westport Slough include improved hydrological conditions within the channel and with time it is

expected that improved fish access and use of tributary streams will also result. In addition to this project, there has been wetland enhancement conducted by Fort James Corp. two miles to the west of the Clatskanie Slough.

Other forms of habitat enhancement include a fish ladder on the falls at river mile 17 of the Clatskanie River, fish habitat enhancement in a tributary to the upper Clatskanie River above the falls, and wetland enhancement around river mile 12. The falls were blasted in the 1940's and the fish ladder constructed in the 1950's to open up additional spawning grounds to salmon and steelhead. The Oregon Fish Commission, now known as the Department of Fish and Wildlife (ODFW), conducted the fish ladder project.

Floodplains of the Columbia River can be found in the Clatskanie Floodplain, Rinearson Slough, Neer Creek, and Deer Island subwatersheds. Channel modifications within these floodplains have resulted in a loss of some 43 miles of slough habitats. Historically these floodplains contained highly productive wetlands and extensive slough habitats, connected to the Columbia River and its tributaries during high flows. Periodic flooding opens up off-channel habitats to fish, providing additional sources of food and refuge from high flows. Flooding also serves the wetlands by flushing out wastes and bringing in minerals, organic material, and oxygen rich water. The miles of channels impacted by dikes and levees are a conservative estimate of the historic extent of channels that used to dissect these floodplains. Agricultural improvements have masked the natural sinuosity and complexity of the floodplains that once drained Beaver Creek, the Clatskanie River, Plympton Creek, Neer Creek, Tide Creek, and many other small tributaries. Anadromous salmonids utilize these habitats in both the adult and juvenile stages. Adult salmonids use floodplain habitats as resting and possibly feeding areas during migration. Floodplain habitats are also utilized by juvenile salmonids for refuge and as feeding grounds.

Stream crossings are presented in this section as an indication of the extent of channel modifications. Most of the stream crossings are within agricultural and forestry lands. Fill/removal permits are not required for normal forest or agriculture operations, so the extent of channel modification is not known for most of the stream crossings. The Sediment Sources Assessment section of the watershed assessment evaluates the potential impacts to water quality associated with stream crossings and roads next to streams.

Data Gaps

This assessment of channel impacts is based on current knowledge of stream channel responses to various modification activities. Due to the number and extent of channel modifications as well as limited access to private lands, the channel modifications have not been field verified. This assessment is a cursory level examination of the potential impacts from historic and current channel modifications. Data gaps can be filled on a project level basis. Field surveys of proposed project sites will be more time and cost efficient then surveying the entire subbasin for all channel modifications.

Table 7.5: Stream crossings in each subwatershed, summarized by CHT sensitivity. Impacts were not evaluated for these features.

		CF	CHT Sensitivity					
Subwatersh	ed Fish		Moderate	Low	Grand Total			
Beaver Creek	Absent	12		Lon	33			
Beaver creek	Present	108		18				
	Total	120		18				
Clatskanie Floo		1	2	2	5			
	Present	25	7	15	47			
	Total	26	9	17	52			
Clatskanie Rive	r Absent	14	40	7	61			
	Present	51	85	46	182			
	Total	65	125	53	243			
Clifton	Present	1		1	2			
	Total	1		1	2			
Deer Island	Absent	1			1			
	Present	7		1	8			
	Total	8		1	9			
Eilertsen Creek	Absent			6	6			
	Present			2	2			
	Total			8	8			
Flume Creek	Absent		1		1			
	Present	1	3	1	5			
	Total	1	4	1	6			
Fox Creek	Absent		1	1	2			
	Present	2	2		4			
	Total	2	3	1	6			
Goble Creek	Absent	1	6		7			
	Present	17	8		25			
	Total	18	14		32			
Graham Creek	Present		3	6	9			
	Total		3	6	9			
Green Creek	Absent		4		4			
	Present	11	17	1	29			
	Total	11	21	1	33			
Hunt Creek	Absent	2	3	11	16			
	Present	4	14	4	22			
	Total	6	17	15	38			
Hunter	Present	1			1			
	Total	1			1			
McBride Creek	Present		7		7			
	Total		7		7			
Merrill Creek	Absent		1		1			
	Present	10	5		15			
	Total	10	6		16			

		CI	CHT Sensitivity				
Subwatershed	Fish		Moderate		Grand Total		
Neer Creek	Absent			2	2		
	Present	4	1	3	8		
То	tal	4	1	5	10		
Nice Creek	Present	2			2		
То	tal	2			2		
Niemela Creek	Present		2	2	4		
То	tal		2	2	4		
OK Creek	Absent			8	8		
	Present		4	4	8		
То	tal		4	12	16		
Olsen Creek	Absent			1	1		
	Present		3	2	5		
То	tal		3	3	6		
Plympton Creek	Absent	2		4	6		
	Present	2	1	15	18		
То	tal	4	1	19	24		
Rinearson Slough	Present	5			5		
То	tal	5			5		
Ross Creek	Present		2	1	3		
То	tal		2	1	3		
Speer Creek	Absent			1	1		
	Present	1			1		
То	tal	1		1	2		
Tandy Creek	Absent			1	1		
	Present		2		2		
То	tal		2	1	3		
Tank Creek	Absent			2	2		
	Present		2		2		
То	tal		2	2	4		
Ternahan Creek	Present		3	1	4		
То	tal		3	1	4		
Tide Creek	Absent	1	6	3	10		
	Present	19	10	3	32		
То	tal	20	16	6	42		
West Creek	Present		3	1	4		
То	tal		3	1	4		
	Grand Total	305	313	176	794		

Confidence Evaluation

High. Although the data presented here have not been field verified, the technique used to evaluate impacts is broad enough to give a general evaluation of the degree to which channels have modified. The results presented here will be useful in planning for monitoring and restoration activities throughout the subbasin.

References:

Allan, J.D. 1995. Stream Ecology: Structure and function of running waters. Kluwer Academic Publishers. Dordrecht, The Netherlands.

Oregon Division of State Lands (ODSL). 2001. About the Removal-Fill Program. <<u>http://statelands.dsl.state.or.us/r-fintro.htm</u>>

Regional Ecosystem Office (REO). 2001. USGS Digital Raster Graphics of Oregon. <<u>http://www.reo.gov/reo/data/DRG_files/ore.htm</u>>

Watershed Proffessionals Network (WPN). 1999. Oregon Watershed Assessment Manual.

Appendix Tables

Channel Modifications Assessment

Appendix Table 7.1a: ODSL Fill/Removal Permits

Watershed	Stream	Location (TxRxSec)	Description	Permit Number	Issue Date	Applicant	Removal (yards3)	Fill (yards3)	Fish Distrib.	СНТ	CHT Sensitivity	Impact
Clatskanie Floodplain	Westport Slough	07N 05W 3	Erosion/Flood Control	212401	19830802	Marshland Draina	0	17000	Present	FP2	High	Moderate
Clatskanie Floodplain	Westport Slough	07N 05W	Erosion/Flood Control	212400	19830802	Webb Dist Improv	0	51000	Present	FP2	High	Moderate
Clatskanie Floodplain	Westport Slough	08N 05W 31	Road Construction	18853	19991011	Columbia Co. PWD	0	1	Present	FP2	High	Low
Clatskanie River	Perkins Creek	07N 04W 21	Road Construction	17190	19990719	Col. County Road	40	160	Present	MM	Moderate	Moderate
Goble Creek	S.F. Goble Creek	06N 02W 22	Road Construction	17188	19990719	Columbia County	15	20	Present	FP3	High	Low
Clatskanie River	West Creek	07N 04W 19	Road Construction	17182	0	Columbia County	0	75	Present	MM	High	Low
Goble Creek	Goble Creek	06N 02W 16	Emergency Permits	16887	19990310	Columbia County	0	40	Present	FP2	High	High
Clatskanie River	Clatskanie River	07N 04W 15	Erosion Control	16883	19990506	Girt James	0	75	Present	FP2	High	Moderate
Deer Island	Merrill Creek	05N 01W 7	Emergency Permits	16863	19990302	Columbia County	0	250	Present	FP3	High	High
West Creek	West Creek	08N 06W 36	Emergency Permits	16828	19990225	Reeves Roy and C	0	0	Present	LC	Moderate	Low
Beaver Creek	Beaver Creek	07N 03W 7	Road Construction	16682	19990715	ODOT	360	170	Present	LC	Moderate	Moderate
Tandy Creek	Tandy Creek	07N 05W 10	Emergency Permits	16209	19981208	Columbia County	450	0	Present	MM	Moderate	Moderate
Tandy Creek	Tandy Creek	07N 05W 10	Emergency Permits	16208	19981215	Aske Doug	150	0	Present	MM	Moderate	Moderate
Clatskanie River	Clatskanie River	07N 04W 8	Erosion Control	15991	19990319	Feasel Nathan	12	517	Present	FP2	High	High
Ross Creek	Ross Creek	07N 05W 6	Erosion/Flood Control	15329	19980724	Conklin Jack	0	84	Present	MM	Moderate	Moderate
Clatskanie River	Clatskanie River	07N 04W 8	Erosion Control	15066	19980520	Lund Mattie M	60	200	Present	FP3	High	Moderate
Clatskanie River	Clatskanie River	07N 04W 8	Erosion Control	15065	19980520	Clatskanie Parks	160	450	Present	FP2	High	High
Clatskanie River	Clatskanie River	07N 04W 8	Maintenance Dredging	14612	19980731	Clatskanie City	75000	75000	Present	FP3	High	High
Clatskanie River	Clatskanie River	07N 04W 22	Erosion Control	14302	19970821	Thompson Philip	88	150	Present	FP2	High	Moderate
Clatskanie River	Clatskanie River	05N 03W 11	Fish Habitat Enhancement	14276	19970814	ODFW	0	202	Absent	MH	Moderate	Low
Clatskanie River	Clatskanie River	07N 04W 8	Erosion/Flood Control	14235	19970821	Stimson Lumber	0	0	Present	FP2	High	Moderate
Tandy Creek	Tandy Creek	07N 05W 10	Road Construction	14234	19970717	Columbia County	133	472	Present	LC	Moderate	Moderate
Eilertsen Creek	Eilertsen Creek	07N 05W 5	Erosion Control	14119	19970630	Berntsen Gary &	96	0	Present	SM	Low	Low
Olsen Creek	Olsen Creek	07N 05W 5	Erosion Control	14118	19970630	Remick Frank & T	215	0	Present	MM	Moderate	Moderate
Ross Creek	Ross Creek	07N 05W 6	Erosion Control	14112	19970630	Dawley Earl & Lo	124	288	Present	MM	Moderate	Moderate
West Creek	West Creek	08N 06W 36	Erosion Control	14021	19970617	West Creek Group	360	272	Present	LC	Moderate	Moderate
Clatskanie Floodplain	Westport Slough	08N 06W 36	Maintenance Dredging	13949	19970624	Teevin Bros Land	3250	0	Present	FP2	High	Moderate
Tandy Creek	Tandy Creek	07N 05W 10	Road Construction	13819	19970522	Columbia County	400	0	Present	MM	Moderate	Moderate
Goble Creek	Goble Creek	06N 02W 3	Erosion Control	13774	19970429	Columbia County	0	300	Absent	SV	Low	Low
Beaver Creek	Beaver Creek	07N 04W 10	Road Construction	13665	19970320	Columbia County	945	1002	Present	MM	High	High
Rinearson Slough	Unknown	07N 03W 2	Road Construction	13549	19970108	Columbia County	72	44	Present	FP3	High	Low
Goble Creek	Goble Creek	06N 02W 15	Road Construction	13548	19970108	Columbia County	211	172	Present	LM	High	High
Clatskanie Floodplain	Beaver Slough	07N 04W 5	Misc. Removal	12224	19970129	Clat. Drainage D	2000	0	Present	FP3	High	Moderate
Clatskanie River	Conyers Creek	07N 04W 17	Erosion Control	12005	19960829	Abeyta Harry	0	100	Present	FP3	High	High

Location Permit Issue Removal Fill Fish CHT CHI Watershed Stream Description Applicant Impact Sensitivity (TxRxSec) Number Date (vards3) (vards3) Distrib. Graham Creek Erosion Control Moderate Graham Creek 07N 05W 2 12002 19960829 Anicker Ray 0 490 Present LC Moderate Tandy Creek Tandy Creek 07N 05W 2 Erosion/Flood Control 11976 19960829 Peterson Jeff 5400 90 Present LC Moderate Moderate Clatskanie Floodplain Graham Creek 07N 05W 2 Erosion Control 11975 19960829 Good Eric 0 490 Present LC Moderate Moderate Clatskanie River Clatskanie River 07N 04W 36 Road Construction 11936 19960821 Columbia County 360 300 Present FP2 High High Graham Creek Graham Creek 07N 05W 11 Erosion Control 11933 19960821 Sears Mike 0 0 Present SM Low Low 490 Present Graham Creek Graham Creek 07N 05W 11 Erosion Control 11921 19960829 McCallister Greg 0 SM Low Low OK Creek Favorite Creek 07N 05W 9 Erosion/Flood Control 11919 19970717 Lammi George 1930 78 Present MM Moderate Moderate Tandy Creek Tandy Creek 07N 05W 10 Erosion Control 19960829 Schultz Jerry 210 0 Present SM Low 11918 Low Graham Creek Graham Creek 07N 05W 11 Erosion Control 11893 19960829 Koski Gary 490 Present SM Low Low 0 Clatskanie River Clatskanie River 07N 04W 15 Erosion Control 11814 19960822 Girt James 0 0 Present FP2 High Low Convers Creek 19960723 Crocker Raymond 0 MM High Low Clatskanie River 07N 04W 18 Erosion Control 11313 0 Present FP3 High Clatskanie River Convers Creek 07N 04W 17 Erosion Control 11272 19960701 Lilich Morris 0 100 Present High Clatskanie River Clatskanie River 07N 03W 32 Erosion Control 11145 19960710 Walker Robert 0 300 Present FP2 High High West Creek West Creek 07N 06W 1 Emergency Permits 11010 0 Boatwright Engin 0 0 Present MM Moderate Low 0 MM Moderate Tandy Creek Tandy Creek 07N 05W 10 Emergency Permits 10549 19961009 Peterson Jeff 49 Present Moderate Clatskanie Floodplain Westport Slough 07N 05W 3 Wetland Enhancement 10320 19960112 Fort James Corp. 0 0 Present FP2 High Low 05N 01W 6 Misc. Removal 10108 19960206 Morse Bros Inc 0 Present FP2 High Moderate Deer Island Deer Island Slough 0 0 Present SV Fox Creek Fox Creek 07N 02W 28 Misc. Removal 9800 19950721 City of Rainier 200 Low Low FP2 High Low Clatskanie River 07N 03W 31 Wetland Enhancement 19940927 Hiatt Malcom E. 0 0 Present Clatskanie River 9166 Fox Creek Fox Creek 07N 02W 16 Misc. Removal 8605 19940701 Rainier School D 10300 4000 Present LM High High Clatskanie Floodplain Discoll Slough 08N 06W 26 Misc. Removal 7865 19940509 Fort James Corp 1000 1000 Present FP3 High Moderate Clatskanie River Clatskanie River 07N 04W 8 Misc. Fill 7788 19940509 Poysky George II 0 5000 Present FP2 High High Beaver Creek Beaver Creek 19940228 Columbia County 133 Present FP2 High Moderate 07N 02W 20 Road Construction 7729 140 Beaver Creek Beaver Creek 07N 02W 20 Road Construction 7727 19940228 Columbia County 142 120 Present FP2 High Moderate Plympton Creek 08N 06W 36 Road Construction 19920724 Clatsop County R 156 126 Present LM High Moderate Clatskanie Floodplain 6791 19920420 Clatskanie City FP2 High Clatskanie River Clatskanie River 07N 04W 8 Pipeline/Cables/Utility 6577 50 1250 Present High Graham Creek Graham Creek 07N 05W 2 Maintenance Dredging 5842 19900919 Koski Gary 2600 0 Present LC Moderate Moderate LM High Beaver Creek S.F. Beaver Creek 06N 03W 2 Roads/Bridges 19900518 Columbia COunty 760 490 Present Moderate 5615 3000 Present FP3 High Clatskanie River Clatskanie River 05N 03W 23 Dams 5352 19890829 Bauder Rudolph & 3000 High Beaver Creek S.F. Beaver Creek 07N 03W 35 Roads/Bridges 4938 19880811 Columbia County 95 80 Present FP3 High Moderate FP2 Clatskanie River Clatskanie River 07N 04W Maintenance Dredging 4879 19881003 Clatskanie City 45000 0 Present High High Beaver Slough 19870730 Beaver Lumber Co 0 Present FP3 High Clatskanie Floodplain 07N 04W 5 Maintenance Dredging 4676 8000 Moderate FP3 High Tide Creek Tide Creek 06N 02W 36 Misc. Fill 4661 0 Tide Creek Rock. 0 0 Present Moderate FP2 High Clatskanie Floodplain Westport Slough 07N 05W 6 Moorage Development 4518 19870217 Shirlor Inc 0 1000 Present Moderate 450 Present High Clatskanie River Clatskanie River 07N 04W 8 Roads/Bridges 4273 19851029 Oregon St. Highw 40 FP2 High

Appendix Table 7.1a: ODSL Fill/Removal Permits

Watershed	Stream	Location (TxRxSec)	Description	Permit Number	Issue Date	Applicant	Removal (yards3)	Fill (yards3)	Fish Distrib.	СНТ	CHT Sensitivity	Impact
Clatskanie River	Clatskanie River	07N 04W 8	Erosion/Flood Control	4258	19850909	City of Clatskan	0	140	Present	FP2	High	High
Graham Creek	Graham Creek	07N 05W 11	Maintenance Dredging	4218	19850718	Columbia County	0	86	Present	SM	Low	Low
Clatskanie Floodplain	Westport Slough	07N 05W 6	Misc. Fill	3857	19831031	Brusco Corp.	0	32000	Present	FP2	High	Moderate
Clatskanie Floodplain	Westport Slough	08N 06W 36	Moorage Development	3478	19811218	Hannon Bros Cons	1300	0	Present	FP2	High	Moderate
Clatskanie Floodplain	Westport Slough	08N 06W 36	Maintenance Dredging	3426	19811012	Westport Lumber	2000	0	Present	FP2	High	Moderate
Clatskanie Floodplain	Beaver Slough	07N 04W 8	Maintenance Dredging	3257	19850612	W. Pacific Dredg	8000	0	Present	FP3	High	Moderate
Beaver Creek	Beaver Creek	07N 03W 13	Erosion/Flood Control	3078	19900730	Columbia County	180	450	Present	FP2	High	High
Clatskanie Floodplain	Discoll Slough	08N 06W 26	Maintenance Dredging	3073	19790504	Crown Zellerbach	1000	0	Present	FP3	High	Moderate
Clatskanie River	Conyers Creek	07N 04W 19	Erosion/Flood Control	3065	19900628	Poole Alice	35	64	Present	MM	High	High
Clatskanie Floodplain	Beaver Slough	07N 04W 5	Roads/Bridges	3011	19790220	Columbia County	0	250	Present	FP3	High	Moderate
Clatskanie Floodplain	Clatskanie Slough	08N 04W 33	Roads/Bridges	2988	19781220	Columbia County	0	1500	Present	FP2	High	Moderate
Clatskanie River	Conyers Creek	07N 04W 19	Erosion/Flood Control	2822	19880426	Poole Alice	213	1252	Present	MM	High	High
Clatskanie River	Conyers Creek	07N 04W 17	Roads/Bridges	2758	19771128	Hamilton Constru	100	150	Present	FP3	High	Moderate
Beaver Creek	Beaver Creek	07N 03W 15	Roads/Bridges	2757	19771128	Hamilton Constru	100	200	Present	FP2	High	Moderate
Beaver Creek	Beaver Creek	07N 03W 13	Roads/Bridges	2756	19771128	Hamilton Constru	250	120	Present	FP2	High	Moderate
Clatskanie River	Conyers Creek	07N 04W 17	Erosion/Flood Control	2737	19870827	Conyers James	50	300	Present	FP3	High	High
Clatskanie Floodplain	Westport Slough	08N 06W	Misc. Fill	2724	0	Brusco Booming &	0	0	Present	FP2	High	Moderate
Clatskanie River	Clatskanie River	07N 04W 8	Erosion/Flood Control	2579	19860821	City of Clatskan	0	485	Present	FP2	High	High
Clatskanie Floodplain	Westport Slough	07N 05W 4	Erosion/Flood Control	2306	19840713	Marshland Draina	0	32900	Present	FP2	High	Moderate
Clatskanie Floodplain	Westport Slough	07N 05W	Erosion/Flood Control	2277	19840621	Woodson Drainage	0	10120	Present	FP2	High	Moderate
Clatskanie River	Conyers Creek	07N 04W 18	Maintenance Dredging	2258	19840607	Hicks David	5	112	Present	FP3	High	High
Clatskanie Floodplain	Westport Slough	07N 05W 6	Boat Ramps	2136	19751001	Shirlor Inc	1000	100	Present	FP2	High	Moderate
Clatskanie River	Clatskanie River	07N 04W 8	Erosion/Flood Control	1887	19820601	Humphrey FE	0	100	Present	FP2	High	High
Clatskanie River	Clatskanie River	07N 04W 35	Erosion/Flood Control	1884	19820720	Thompson Louis	54	234	Present	FP2	High	High
Clatskanie Floodplain	Westport Slough	08N 05W 34	Erosion/Flood Control	1877	19820421	Marshland Draina	4670	12290	Present	FP2	High	Moderate
Clatskanie Floodplain	Westport Slough	07N 05W	Maintenance Dredging	1869	19750204	Westport Lumber	2000	0	Present	FP2	High	Moderate
Clatskanie River	Clatskanie River	07N 04W 8	Erosion/Flood Control	1732	19800204	Lilich John	0	100	Present	FP2	High	High
Clatskanie River	Clatskanie River	07N 04W 10	Erosion/Flood Control	1518	19780929	Grayson Charles	50	400	Present	FP3	High	High
Clatskanie River	Clatskanie River	07N 04W 15	Erosion/Flood Control	1222	19760817	Grayson Charles	0	150	Present	FP2	High	High
Clatskanie River	Clatskanie River	07N 04W 8	Erosion/Flood Control	1156	0	City of Clatskan	10	38	Present	FP2	High	High
Clatskanie River	Clatskanie River	07N 04W	Erosion/Flood Control	895	19741007	Girt Everett	0	150	Present	FP2	High	High
Clatskanie River	Clatskanie River	07N 04W	Erosion/Flood Control	868	19740909	Wika Ozzie & Ron	0	800	Present	FP2	High	High
Clatskanie Floodplain	Westport Slough	07N 05W	Fish Habitat Enhancement	0	0	LCR Watershed Co	0	0	Present	FP2	High	Low

Appendix Table 7.1a: ODSL Fill/Removal Permits

Watershed	Stream	StreamLocation (TxRxSec)Permit #Year		Rate	Fish Distribution	СНТ	CHT Sensitivity	Impact	
Beaver Creek	Lost Creek	T7N R3W 19	R 100512	1993	5.0 af	Absent	FP3	High	Low
Beaver Creek	Unnamed	T7N R3W 29	R 5574	1970	2.0 af	Present	FP3	High	Low
Beaver Creek	Unnamed	T7N R3W 29	S 34854	1970	5.0 af	Present	MV	Moderate	Low
Beaver Creek	Unnamed	T7N R3W 29	S 34855	1970	5.0 af	Present	MV	Moderate	Low
Beaver Creek	Unnamed	T7N R3W 29	S 34856	1970	0.04 cfs	Present	MV Moderate		Low
Clatskanie Floodplain	Unnamed	T8N R4W 26	R 101739	1993	0.03 af	Present	MM	Moderate	Low
Clatskanie River	Unnamed	T7N R4W 16	R 102955	1993	0.03 af	Present	SM	Low	Low
Clatskanie River	Unnamed	T7N R4W 26	R 101470	1993	0.17 af	Present	MH	Moderate	Low
Clatskanie River	Unnamed	T7N R4W 28	R 103016	1993	0.36 af	Present	FP3	High	Low
Neer Creek	Unnamed	T6N R2W 3	S 33534	1968	0.06 cfs	Present	MH	Moderate	Low
Tank Creek	Unnamed	T8N R4W 25	R 101819	1993	0.1 af	Absent	SV	Low	Low
West Creek	West Creek	T7N R6W 1	R 102854	1993	1.0 af	Present	SM	Low	Low
Beaver Creek	Beaver Creek	T7N R3W 36	S 37286	1973	0.02 cfs	Present	FP3	High	Moderate
Beaver Creek	NF Stewart Creek	T8N R4W 35	S 24582	1956	0.09 af	Present	MM	Moderate	Moderate
Clatskanie River	Dribble Creek	T5N R3W 23	R 11164	1987	8.2 af	Present	SM	Low	Moderate
Goble Creek	Goble Creek	T6N R2W 20	R 12313	1997	0.26 af	Present	MM	High	Moderate
Goble Creek	SF Goble Creek	T6N R2W 23	R 12864	1999	3.0 af	Present	MM	High	Moderate
Tide Creek	Endicott Creek	T6N R2W 29	R 1519	1953	0.03 af	Present	LM	High	Moderate
Beaver Creek	Palmer Creek	T7N R3W 18	R 100512	1993	5.0 af	Present	FP3	High	High
Beaver Creek	Palmer Creek	T7N R3W S18	?	1993	?	Present	FP3	High	High
Beaver Creek	Palmer Creek	T7N R3W S18	?	1993	?	Present	FP3	High	High
Beaver Creek	Unnamed	T7N R3W 29	R 5588	1970	5.0 af	Present	FP3	High	High
Fox Creek	Fox Creek	T7N R2W 28	R 1319	1952	14.5 af	Present	MV	Moderate	High

Appendix Table 7.2a: ODWR Water Rights for Impoundments

Appendix Table 7.3a: Historical and Current Data Collected From Interviews, Agency Records, and Publications.

Watershed	Stream	Туре	Location (TxRxSec)	Description	Source	Approx. Date	Fish Distrib.	СНТ	CHT Sensitivity	Impact
Clatskanie	Clatskanie				Oregon Fish					
River	River	Water Diversion	T5N R3W 14	Small home use hydro power plant	Commission	1951	Present	FP3	High	Low
					Oregon Fish					
West Creek	West Creek	Impoundment	T8N R6W 36	Dam on West Creek 3ft high	Commission	1951	Present	MM	Moderate	Moderate
					Oregon Fish					
West Creek	West Creek	Impoundment	T7N R6W 1		Commission	1951	Present	MM	Moderate	Moderate
	Plympton				US Dept. of Interior					
Creek	å	Impoundment	T7N R6W 2	······································	Fisheries Report	1950	Present	MM	Moderate	Moderate
Plympton	Plympton				US Dept. of Interior					
Creek	Creek	Impoundment	T7N R6W 1		Fisheries Report	1950	Present	MM	Moderate	Moderate
	Plympton				US Dept. of Interior					
Creek	Creek	Impoundment	T8N R6W 36	Plympton Creek	Fisheries Report	1950	Present	LM	High	Moderate
Beaver Creek	Beaver Creek	Impoundment	T7N R3W 13	Dam on Beaver Creek	Interview	1934-1948	Present	FP2	High	High
Clatskanie		Habitat		Clatskanie River Fish Ladder 1 1/4 miles west						
River	River	Enhancement	T6N R3W 9		Fisheries Report	?	Present	LM	High	Low
		Erosion/Flood			US Dept. of Interior					
Deer Island	Tide Creek	Control	T6N R1W 30	Tide Creek Tide Gates	Fisheries Report	1950-present	Present	FP3	High	High
						1930/1940-				
Beaver Creek	Lost Creek	Impoundment	T6N R3W 11	Old Mill Pond on Lost Creek	Interview	present	Absent	MM	High	Low
Clatskanie		Erosion/Flood								
River	Creek	Control	T7N R4W 17	Rip Rap on Conyers Creek	Interview	1996-1997	Present	FP3	High	Moderate
				Bridge on Fox Creek replaced by a culvert. (fill						
Fox Creek	Fox Creek	Roads/Bridges	T7N R2W 16	opened in 1996 and restored at C street)	Interview	1950	Present	LM	High	High
				Culvert in Nice Creek from Hwy 30 to						
Nice Creek	Nice Creek	Roads/Bridges	T7N R2W 16	Columbia receives effluent from Pww?	Interview	?	Present	LM	High	Moderate
Clatskanie										
River	Carcus Creek	Impoundment	T6N R3W 32	Earthern dam forming pond on Carcus Creek	Interview	later 1940s	Absent	LM	High	Low
Clatskanie										
River	Carcus Creek	Impoundment	T6N R3W 32	Earthern dam forming pond on Carcus Creek	Interview	later 1940s	Absent	FP3	High	Low
Clatskanie										
River	Carcus Creek	Impoundment	T6N R3W 33	Earthern dam forming pond on Carcus Creek	Interview	later 1940s	Absent	FP3	High	Low
Clatskanie										
River	Carcus Creek	Impoundment	T6N R3W 33	$\mathcal{G}_{\mathbf{r}}$	Interview	later 1940s	Absent	FP3	High	Low
Clatskanie				Earthern dam forming ponds on Carcus Creek						
River	Unnamed	Impoundment	T6N R3W 33	Trib.	Interview	later 1940s	Absent	FP3	High	Low
Clatskanie										
River	Carcus Creek	Impoundment	T6N R3W 33	Earthern dam forming pond on Carcus Creek	Interview	later 1940s	Absent	FP3	High	Low
Clatskanie	Clatskanie			Low dam for Hydro power on the Clatskanie						
River	River	Impoundment	T5N R3W 10	River	Interview	later 1940s	Present	FP3	High	High